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SUMMARY

Potential advances are investigated in the area of generalized anelastic approximations. Consistent control-
volume integrals are designed and compared for the established Lipps—Hemler form (of anelastic approx-
imation) and Durran’s pseudo-incompressible form. The Durran system provides a unique theoretical
tool—useful for research of geophysical and stellar flows—within the existing set of reduced, Boussinesq-
type fluid models. It represents thermal aspects of compressibility free of sound waves, yet the momentum
equation is unapproximated. The latter admits unabbreviated baroclinic production of vorticity, thus fa-
cilitating separation of compressibility and baroclinicity effects per se. Compared with other reduced
fluid models, there is little cumulative experience with integrating the Durran system. Perhaps the first
conservative integrations of Durran’s equations are presented, using flux-form transport methods and
exact projection for the associated elliptic problem. Because the resulting code is built from a preexisting
anelastic model, the consistency of the numerics is assured thus minimizing uncertainties associated with
ad hoc code comparisons. While broader physical implications are addressed, theoretical considerations
are illustrated with examples of atmospheric flows. Copyright © 2007 John Wiley & Sons, Ltd.

Received 3 April 2007; Revised 14 July 2007; Accepted 16 July 2007

KEY WORDS: reduced fluid models; anelastic approximations; Boussinesq models; compressible flows;
pseudo-incompressible equations; baroclinicity

1. INTRODUCTION

Boussinesq approximationsi underlie the majority of research in low Mach number flows under
gravity, such as atmospheres (planetary and stellar) and oceans. Yet in such models the 3D baro-
clinic production of vorticity is abbreviated, in essence, to horizontal gradients of buoyancy—thus
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IThis includes anelastic equations that extend classical incompressible Boussinesq model [1] to a continuously
stratified reference density [2].
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admitting thermally driven circulations only in vertical planes,® e.g. sea-breeze circulation.! This
fundamental departure from the full 3D baroclinicity of the complete Euler/Navier—Stokes’ equa-
tions limits degrees of freedom available for realizations of Boussinesq fluids. The mathematical
formalism underlying derivations of anelastic systems is a judicious scale analysis [1, 2, 4, 5] lead-
ing to reduced fluid model with fundamental mass, energy and entropy invariants, essential for the
physical realizability of solutions. The validity of anelastic models cannot be assured a priori,| and
it depends on the portfolio of documented applications. Notwithstanding the success of anelastic
models in advancing the understanding of geophysical and stellar flows, there are classes of fluid
motions seemingly susceptible to the underlying assumptions yet sensitive to details of employed
equations. One such example is the ‘climate’ of the solar convection zone (outer third of the
Sun) whose simulations appear sensitive to the details of viscosity or baroclinicity; cf. [6, 7] and
references therein.

Durran’s [8] pseudo-incompressible approximation—also referred to as a subseismic approxi-
mation, in astrophysics [9]—is distinct. It retains the full form of the momentum equations, while
filtering sound waves from the equations of motion, in the spirit of the anelastic models. While this
accurately represents many aspects of planetary atmospheres [10], more important, it conveniently
separates the baroclinicity from the compressibility effects, thus enabling inquiries into the role
of baroclinicity in low Mach number flows. In particular, it may shed light on the dynamics of
flows where compressible and anelastic models appear to predict contrasting realizations, such
as in the solar convection zone [7] or bifurcating Rayleigh—-Bénard convection of cryogenic gas
[11]. Clearly, the distinct feature of the Durran pseudo-incompressible system makes it a unique
theoretical tool that complements both the standard anelastic and fully compressible models.

In general, there is little experience with integrating even the simplified adiabatic form of
Durran’s equations; especially, in the strong conservation form with the exact projection for
pressure. The mathematically consequential difference between the anelastic and the pseudo-
incompressible system is the nonlinearity of the pressure-gradient force that ultimately leads
to a nonlinear boundary value problem for pressure and alters the properties of the associated
elliptic operator. In this paper, we extend the anelastic nonhydrostatic Eulerian/semi-Lagrangian
numerical model for fluids EULAG—see [12, 13] for recent developments and summaries—to allow
for integrating the adiabatic Durran equations, consistently with EULAG’s proven semi-implicit
nonoscillatory forward-in-time (NFT) numerics based on the MPDATA transport methods [14].
To retain EULAG’s numerical structure for the Durran system, we design an iterative procedure,
where at each iteration a linear elliptic problem—implied by the mass continuity constraint—is
solved with a preconditioned nonsymmetric Krylov-subspace approach.

In the following section we describe the adiabatic Durran system and summarize the integration
approach. Section 3 outlines numerical examples in the area of inertia-gravity wave dynamics,
spawning the range of scales from meso to planetary as well as baroclinic life cycle experiments
relevant to the formation of synoptic-scale weather systems. Remarks in Section 4 address briefly
diabatic extensions and conclude the paper.

SThe vertical is defined by the direction of gravity.

1For example of some inadmissible effects, see discussion of Figure 10.8 in Section 10.4 in [3].

IThis is because the scale analysis is rigorously discriminating only when it indicates that some terms in the equations
cannot be neglected; obviously, even small terms can have profound impact on the solutions for fluid states close
to bifurcation.
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2. PSEUDO-INCOMPRESSIBLE MODEL

2.1. Analytic formulation

It is constructive to write an adiabatic Durran’s system [8] in a symbolic perturbation form con-
forming with EULAG’s default formulation [12, 13] built on the anelastic Lipps—Hemler equations
[4]:

V- (p*v)=0; D—G/—— VO; E——@V/— 9—/—f —E 1)
V=R TV e TV e TN T g

Here p* denotes a generalized density, 0 is the potential temperature, vectors g and f are the
gravity acceleration and the Coriolis parameter, 7’ is a normalized pressure-perturbation variable;
and primes symbolize deviations from geostrophically balanced environmental (ambient) state
(Ve, Oe), implied by the governing equations. The pseudo-incompressible system (1) and the Lipps—
Hemler anelastic system differ in two aspects. First, p* = p, 0y in (1) but p* = py, in the anelastic
mass-continuity equation—subscript b refers to a static horizontally homogeneous reference state.
Second, the momentum equation in (1) is unapproximated, whereupon factors o € appear in the
pressure-gradient and Coriolis accelerations, and 0. replaces 0p in the denominator of the buoyancy
term. In effect, the deeper and broader the studied atmosphere, and/or larger the stratification, the
greater will be solution departures from the familiar behaviors of anelastic codes.

2.2. Numerical approximations

The NFT algorithm employed in EULAG to integrate (1) (or its equivalent Eulerian flux form)
can be formally written as

Y = LE; () + 0.56 R =, + 0.5t R Q)

where wl'.”rl is the solution sought at the grid point @t x)), lz =" +0.56tR", and LE denotes
a two-time level either advective semi-Lagrangian [15] or flux-form Eulerian [16] nonoscillatory
two-time level transport operator (viz advection scheme). Equation (2) represents a system implicit
with respect to all dependent variables in (1), because velocity, pressure and potential temperature
are assumed to be unknown at n + 1. In order to retain this numerical structure for the Durran
system, algorithm (2) is executed within an outer iteration:

011 =0 — 0.55t (V' T - V0,
L ’ 9/ n+1,v 9n+1,v—1 (3)
V:’H" =vV; —0.50t 0"+1"_1Vn/|"+1’v + gil +fx (v
Oc Oc .
1
where v=1, ..., m numbers the outer iterations, and at each iteration the linear elliptic problem—

implied by the first equation in (1)—is solved using a preconditioned generalized conjugate-residual
(GCR) approach [17, 18]. Note that the only elements lagged behind in (3) are the o 0 factors in
the pressure-gradient and Coriolis accelerations. For the first guess 0"+1-0 we use the homogeneous
solution (2) for y=0=0 + 0. and R=0. Typically, the outer iteration converges rapidly, and
the initial guess for v**1-¥ attains a suitable ‘physically meaningful’ convergence threshold of the
GCR solver—|| (0t /p*)V - (p*V) |l oo <&, cf. [19]—already at v=m = 3. Correspondingly, the work
within the GCR solver decreases rapidly past v=1.
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Figure 1. Vertical velocity for anelastic (a), (b) and Durran (c) solutions—idealized 2D deep planetary

inertia-gravity wave at a mid latitude; (a) and (c) are after 4 h and (b) is after 12 h starting from a potential

orographic flow. Gray scale and contour intervals are the same in all panels, but wind vectors scale with
maximal flow magnitude. Mountain height and width allude to the continent of North America.
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3. RESULTS

3.1. Inertia-gravity waves

For shallow (= 10 km deep) mesoscale motions the differences between the compressible, anelas-
tic and Durran’s systems were shown insignificant compared with truncation errors of discrete
integrals [20]. In the numerical framework summarized in Section 2.2, we found the differences
negligibly small even for deep mesoscale atmospheres and shallow planetary flows. For example,
in benchmarks of a 60 km deep non-Boussinesq amplification of a 2D mountain wave [21] and a
8 km deep planetary 3D orographic flows [22], the differences between the anelastic and Durran’s
solutions were observed on third and second digit, respectively, in norms of the vertical-velocity
fields. This corroborates the normal mode analysis in [10], revealing the differences between the
two systems for deep internal gravity modes at longer horizontal scales. The latter is illustrated in
Figure 1, which shows that long and deep inertia-gravity waves tend to propagate energy in the
vertical too quickly in Durran’s model.

3.2. Baroclinic life cycle experiments

We performed baroclinic life cycle experiments—relevant to the formation of synoptic-scale
weather systems—with both sets of equations starting with identical initial conditions (a weakly
perturbed baroclinic zonal jet, cf. Section 2 in [23]) in a 24km deep domain. After 10 days of
simulated time, the overall structure of the solution agrees for both equation systems. However,
Durran’s solution predicts a faster growth and slower propagation (by about 1 m/s) of baroclinic
eddies, leading to substantial differences in solution details, Figure 2.
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Figure 2. Vertical component of surface vorticity (V x v — f)/|/f|| (color shaded) and horizontal wind
speed (m/s) (solid contours) after 10 days of baroclinic life cycle experiments with the Lipps—Hemler
(left) and Durran (right) equations.
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4. REMARK

For adiabatic dynamics the differences between consistent numerical solutions of the Durran and
Lipps—Hemler anelastic equations appear immaterial for a broad range of problems, but become
substantial for a deep planetary atmosphere. Whether this holds with diabatic forcing remains
unknown since the resulting boundary value problem for pressure becomes more difficult to solve
due to the additional heat source term from the energy equation.
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